Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Redetermination of 3-[(Z)-1-hydroxy-3-oxo-butenyl]-2H-chromen-2-one at 193 K

Xiangshan Wang, ${ }^{\text {a,b* }}$ Zhaosen Zeng, ${ }^{\text {a }}$ Yuling Li ${ }^{\text {a }}$ and Daqing Shi ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ${ }^{\mathbf{b}}$ The Key Laboratory of Biotechnology of Medical Plants of Jiangsu Province, Xuzhou 221116, People's Republic of China

Correspondence e-mail:
xswang1974@yahoo.com

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.058$
$w R$ factor $=0.170$
Data-to-parameter ratio $=12.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The structure of the title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4}$, which was synthesized by the reaction of salicylaldehyde and 4-hydroxy6 -methyl-2H-pyran-2-one in the presence of triethylbenzylammonium chloride in aqueous media, was previously determined at room temperature [March, Moreno-Manas, Roca, Germain, Piniella \& Dideberg (1986). J. Heterocycl. Chem. 23, 1511-1153]. As in the present determination, the X-ray analysis revealed that the title compound is in the enol form, which was confirmed by ${ }^{1} \mathrm{H}$ NMR data. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions connect molecules into a two-dimensional framework.

Comment

Coumarins have attracted intense interest in recent years because of their diverse pharmacological properties; some of these compounds possess anti-estrogenic and anti-ovulatory activity (Agrawal et al., 1978), antibacterial activity (Desai \& Mehta, 1997; Miky et al., 1997), anti-oxidant activity (Vladimirov et al., 1991), antimicrobial activity (Rao et al., 1982; 1983) and anti-inflammatory activity (Kulkarni et al., 1981). The structure of the title compound, (I), has already been determined at room temperature (March et al., 1986), but the H atom of the enol hydroxyl group was not located. In order to confirm the predicted structure, the X-ray analysis of (I) was repeated at low temperature.

(I)

In the title compound, the $\mathrm{C} 10-\mathrm{C} 11$ bond distance of 1.372 (3) \AA is statistically equivalent to the value of 1.368 (3) A in the original determination (March et al., 1986),

Figure 1
The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Received 21 June 2005 Accepted 12 July 2005 Online 16 July 2005

Figure 2
The molecular packing of (I). Dashed lines indicate hydrogen bonds.
indicating double-bond character in both cases. In addition, the longer bond, 1.325 (2) \AA, for $\mathrm{C} 10-\mathrm{O} 3$ compared to 1.257 (3) \AA for $\mathrm{C} 12-\mathrm{O} 4$ coupled with the ${ }^{1} \mathrm{H}$ NMR data (see Experimental) confirm that the title structure is in the enol form. The atoms of the pyran ring ($\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{O} 1$) are essentially coplanar (Fig. 1), with a maximun deviation of 0.018 (2) A for O1; this ring forms a dihedral angle of $1.4(1)^{\circ}$ with the benzene ring (C4-C9).

In addition to an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions connect molecules into a twodimensional framework (Table 2 and Fig. 2).

Experimental

The title compound, (I), was prepared by the reaction of salicylaldehyde ($0.25 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-hydroxy-6-methyl- 2 H -pyran-2-one $(0.25 \mathrm{~g}, 2 \mathrm{mmol})$ in the presence of triethylbenzylammonium chloride $(0.1 \mathrm{~g})$ in water at 363 K for 8 h (yield 93.5%, m.p. $421-423 \mathrm{~K}$). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Elemental analysis calculated: C 67. 82, H 4.38%; found: C 67. 71, H 4.45\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.37$ $\left(s, 3 H, \mathrm{CH}_{3}\right), 7.06(s, 1 \mathrm{H}, \mathrm{CH}=), 7.35-7.72(m, 4 \mathrm{H}, \mathrm{ArH}), 8.68(s, 1 \mathrm{H}$, $\mathrm{CH}=), 15.89(s, 1 \mathrm{H}, \mathrm{OH})$; IR $\left(\mathrm{cm}^{-1}\right): 3255(b, \mathrm{OH}), 3059(\mathrm{Ar}-\mathrm{H})$, $2939(\mathrm{C}-\mathrm{H}), 1737(\mathrm{C}=\mathrm{O}), 1580,1474$ (benzene ring).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4}$
$M_{r}=230.21$
Triclinic, $P \overline{1}$
$a=6.7577(19) \AA$
$b=8.799(3) \AA$
$c=9.890(4) \AA$
$\alpha=83.17(4)^{\circ}$
$\beta=76.17(3)^{\circ}$
$\gamma=71.10(3)^{\circ}$
$V=539.7(3) \AA^{\circ}$
Data collection
Rigaku Mercury diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.958, T_{\text {max }}=0.984$
5300 measured reflections
1958 independent reflections

$Z=2$

$D_{x}=1.417 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1738 reflections
$\theta=3.2-25.3^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, light yellow
$0.41 \times 0.37 \times 0.15 \mathrm{~mm}$

1461 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=25.4^{\circ}$
$h=-7 \rightarrow 8$
$k=-10 \rightarrow 9$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0949 P)^{2}\right.} \\
&+0.0935 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

O1-C9	$1.372(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.466(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.379(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.357(3)$
O2-C1	$1.206(2)$	$\mathrm{C} 2-\mathrm{C} 10$	$1.476(3)$
O3-C10	$1.325(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.372(3)$
O4-C12	$1.257(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.430(3)$
C9-O1-C1	$123.13(15)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.80(18)$
O2-C1-O1	$115.24(17)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 2$	$113.41(17)$
O2-C1-C2	$127.74(18)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 2$	$125.88(18)$
O1-C1-C2	$117.02(17)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$120.6(2)$
C3-C2-C1	$119.56(18)$	$\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 11$	$121.3(2)$
C3-C2-C10	$119.95(17)$	$\mathrm{O} 4-\mathrm{C} 12-\mathrm{C} 13$	$119.4(2)$
C1-C2-C10	$120.49(17)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$119.3(2)$
C9-O1-C1-O2	$179.25(16)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$-0.9(3)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-0.6(3)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 4$	$0.9(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.2(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{O} 1$	$-0.1(3)$
$\mathrm{C} 10-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.02(15)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 10-\mathrm{C} 11$	$0.4(3)$

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 \cdots O4	0.84	1.74	$2.493(2)$	148
C3-H3A $\cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.52	$3.358(2)$	147
C5-H5 $^{\mathrm{i}} \mathrm{O}^{1}$	0.95	2.53	$3.414(3)$	155
C7-H7 $^{\mathrm{i}} \mathrm{O}^{\mathrm{ii}}$	0.95	2.45	$3.371(3)$	163

Symmetry codes: (i) $x-1, y, z$; (ii) $x, y+1, z-1$.
The H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$ and $\mathrm{O}-\mathrm{H}=0.84 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl.

Data collection: CRYSTALCLEAR (Rigaku, 1999); cell refinement: CRYSTALCLEAR; data reduction: CrystalStructure (Rigaku/ MSC 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

We thank the Foundation of the Natural Science Foundation (No. 04 KJB150139) of the Education Committee of Jiangsu Provincefor financial support.

References

Agrawal, A. K., Gupta, M. L., Bhargava, K. P. \& Parmar, S. S. (1978). Res. Commun. Chem. Pathol. Pharmacol. 22, 625-628.
Desai, D. \& Mehta, R. H. (1997). Ind. J. Heterocycl. Chem. 6, 241-244.
Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
Kulkarni, M. V., Patil, V. D., Biradar, V. N. \& Nanjappa, S. (1981). Arch. Pharm. 34, 435-439.

organic papers

March, P. D., Moreno-Manas, M., Roca, J. L., Germain, G., Piniella, J. F. \& Dideberg, O. (1986). J. Heterocycl. Chem. 23, 1511-1513.
Miky, J. A. A., Saleh, N. M., Shmeiss, N. A. M. M. \& Fadl-Allah, E. M. (1997). Egypt. J. Pharm. Sci. 38, 221-231.
Rao, A. K., Raju, M. S. \& Raju, K. M. (1982). Acta Cienc. Indica Ser. Chem. 8, 224-227.
Rao, A. K., Raju, M. S. \& Raju, K. M. (1983). Acta. Cienc. Indica Ser. Chem. 9, 200-203.
Rigaku (1999). CRYSTALCLEAR. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Gottingen, Germany;:
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Vladimirov, Y. A., Parfenov, E. A., Epanchintseva, O. M. \& Smirnov, L. N. (1991). Byull. Eksp. Biol. Med. 112, 358-360. (In Russian.)

